1.CRC的工作方法
在发送端产生一个循环冗余码,附加在信息位后面一起发送到接收端,接收端收到的信息按发送端形成循环冗余码同样的算法进行校验,
若有错,需重发。
2.循环冗余码的产生与码字正确性检验例子。
例1.已知:信息码:110011 信息多项式:K(X)=X5+X4+X+1
生成码:11001 生成多项式:G(X)=X4+X3+1(r=4)
求:循环冗余码和码字。
解:1)(X5+X4+X+1)*X4的积是 X9+X8+X5+X4 对应的码是1100110000。
2)积/G(X)(按模二算法)。
由计算结果知冗余码是1001,码字就是1100111001。
1 0 0 0 0 1←Q(X)
G(x)→1 1 0 0 1 )1 1 0 0 1 1 0 0 0 0←F(X)*Xr
1 1 0 0 1 ,
1 0 0 0 0
1 1 0 0 1
1 0 0 1←R(X)(冗余码)
例2.已知:接收码字:1100111001 多项式:T(X)=X9+X8+X5+X4+X3+1
生成码 : 11001 生成多项式:G(X)=X4+X3+1(r=4)
求:码字的正确性。若正确,则指出冗余码和信息码。
解:1)用字码除以生成码,余数为0,所以码字正确。
1 0 0 0 0 1←Q(X)
G(x)→1 1 0 0 1 )1 1 0 0 1 1 1 0 0 1←F(X)*Xr+R(x)
1 1 0 0 1 ,
1 1 0 0 1
1 1 0 0 1
0←S(X)(余数)
2)因r=4,所以冗余码是:11001,信息码是:110011
3.循环冗余码的工作原理
循环冗余码CRC在发送端编码和接收端校验时,都可以利用事先约定的生成多项式G(X)来得到,K位要发送的信息位可对应于一个(k-1)
次多项式K(X),r位冗余位则对应于一个(r-1)次多项式R(X),由r位冗余位组成的n=k+r位码字则对应于一个(n-1)次多项式T(X)=Xr*K(X)+R(X)。
4.循环冗余校验码的特点
1)可检测出所有奇数位错;
2)可检测出所有双比特的错;
3)可检测出所有小于、等于校验位长度的突发错。
模2除法每一步的模2减法,可以简单的理解为就是按位异或,各种情况的结果为
0 0 1 1
0 1 0 1
--- --- --- ---
0 1 1 0
例子3.1
计算余数(可以不考虑模2除法的结果,光考虑余数)
101100110000
10011
--------------------------
1010110000
10011
--------------------------
11010000
10011
--------------------------
1001000
10011
--------------------------
0100
发送端的码字应为101100110100