x1x1x1
级别: *
精华主题: * 篇
发帖数量: * 个
工控威望: * 点
下载积分: * 分
在线时间: (小时)
注册时间: *
最后登录: *
查看x1x1x1的 主题 / 回贴
楼主  发表于: 2011-05-09 11:16
利玛电子 Avago光耦代理分销商,A316J、T250V、2611V、A3120、A3140、A7800A、A7840、A332J
QQ:810654678  TEL:0755-8836 5152,137-1457-2551罗先生

------------------------------------------------------------------------

光耦常用参数
正向压降VF:二极管通过的正向电流为规定值时,正负极之间所产生的电压降。
正向电流IF:在被测管两端加一定的正向电压时二极管中流过的电流。
反向电流IR:在被测管两端加规定反向工作电压VR时,二极管中流过的电流。
反向击穿电压VBR::被测管通过的反向电流IR为规定值时,在两极间所产生的电压降。
结电容CJ:在规定偏压下,被测管两端的电容值。
反向击穿电压V(BR)CEO:发光二极管开路,集电极电流IC为规定值,集电极与发射集间的电压降。
输出饱和压降VCE(sat):发光二极管工作电流IF和集电极电流IC为规定值时,并保持IC/IF≤CTRmin时(CTRmin在被测管技术条件中规定)集电极与发射极之间的电压降。
反向截止电流ICEO:发光二极管开路,集电极至发射极间的电压为规定值时,流过集电极的电流为反向截止电流。
电流传输比CTR:输出管的工作电压为规定值时,输出电流和发光二极管正向电流之比为电流传输比CTR。
脉冲上升时间tr、下降时间tf:光耦合器在规定工作条件下,发光二极管输入规定电流IFP的脉冲波,输出端管则输出相应的脉冲波,从输出脉冲前沿幅度的10%到90%,所需时间为脉冲上升时间tr。从输出脉冲后沿幅度的90%到10%,所需时间为脉冲下降时间tf。
传输延迟时间tPHL、tPLH:光耦合器在规定工作条件下,发光二极管输入规定电流IFP的脉冲波,输出端管则输出相应的脉冲波,从输入脉冲前沿幅度的50%到输出脉冲电平下降到1.5V时所需时间为传输延迟时间tPHL。从输入脉冲后沿幅度的50%到输出脉冲电平上升到1.5V时所需时间为传输延迟时间tPLH。
入出间隔离电容CIO:光耦合器件输入端和输出端之间的电容值。
入出间隔离电阻RIO:半导体光耦合器输入端和输出端之间的绝缘电阻值。
入出间隔离电压VIO:光耦合器输入端和输出端之间绝缘耐压值。
----------------------------------------------------------------------------------------
常用的器件。光电耦合器分为两种:一种为非线性光耦,另一种为线性光耦。
常用的4N系列光耦属于非线性光耦
常用的线性光耦是PC817A—C系列。
非线性光耦的电流传输特性曲线是非线性的,这类光耦适合于弄开关信号的传输,不适合于传输模拟量。
线性光耦的电流传输手特性曲线接进直线,并且小信号时性能较好,能以线性特性进行隔离控制。
开关电源中常用的光耦是线性光耦。如果使用非线性光耦,有可能使振荡波形变坏,严重时出现寄生振荡,使数千赫的振荡频率被数十到数百赫的低频振荡依次为号调制。由此产生的后果是对彩电,彩显,VCD,DCD等等,将在图像画面上产生干扰。同时电源带负载能力下降。
在彩电,显示器等开关电源维修中如果光耦损坏,一定要用线性光耦代换。
常用的4脚线性光耦有PC817A----C。PC111 TLP521等常用的六脚线性光耦有:TLP632 TLP532 PC614 PC714 PS2031等。
常用的4N25 4N26 4N35 4N36是不适合用于开关电源中的,因为这4种光耦均属于非线性光耦。
以下是目前市场上常见的高速光藕型号:
  
100K bit/S:
6N138、6N139、PS8703

1M bit/S:
6N135、6N136、CNW135、CNW136、PS8601、PS8602、PS8701、PS9613、PS9713、CNW4502、HCPL-2503、HCPL-4502、HCPL-2530(双路)、HCPL-2531(双路)

10M bit/S:
6N137、PS9614、PS9714、PS9611、PS9715、HCPL-2601、HCPL-2611、HCPL-2630(双路)、HCPL-2631(双路)
光耦合器的增益被称为晶体管输出器件的电流传输比 (CTR),其定义是光电晶体管集电极电流与LED正向电流的比率(ICE/IF)。光电晶体管集电极电流与VCE有关,即集电极和发射极之间的电压。
可控硅型光耦
还有一种光耦是可控硅型光耦。
例如:moc3063、IL420;
它们的主要指标是负载能力;
例如:moc3063的负载能力是100mA;IL420是300mA;
x1x1x1
级别: *
精华主题: * 篇
发帖数量: * 个
工控威望: * 点
下载积分: * 分
在线时间: (小时)
注册时间: *
最后登录: *
查看x1x1x1的 主题 / 回贴
1楼  发表于: 2011-05-09 11:17
光耦使用技巧
光电耦合器(简称光耦),是一种把发光元件和光敏元件封装在同一壳体内,中间通过电→光→电的转换来传输电信号的半导体光电子器件。光电耦合器可根据不同要求,由不同种类的发光元件和光敏元件组合成许多系列的光电耦合器。目前应用最广的是发光二极管和光敏三极管组合成的光电耦合器,其内部结构如图1a所示。
光耦以光信号为媒介来实现电信号的耦合与传递,输入与输出在电气上完全隔离,具有抗干扰性能强的特点。对于既包括弱电控制部分,又包括强电控制部分的工业应用测控系统,采用光耦隔离可以很好地实现弱电和强电的隔离,达到抗干扰目的。但是,使用光耦隔离需要考虑以下几个问题:
① 光耦直接用于隔离传输模拟量时,要考虑光耦的非线性问题;
② 光耦隔离传输数字量时,要考虑光耦的响应速度问题;
③ 如果输出有功率要求的话,还得考虑光耦的功率接口设计问题。
1 光电耦合器非线性的克服
光电耦合器的输入端是发光二极管,因此,它的输入特性可用发光二极管的伏安特性来表示,如图1b所示;输出端是光敏三极管,因此光敏三极管的伏安特性就是它的输出特性,如图1c所示。由图可见,光电耦合器存在着非线性工作区域,直接用来传输模拟量时精度较差。

图1 光电耦合器结构及输入、输出特性
解决方法之一,利用2个具有相同非线性传输特性的光电耦合器,T1和T2,以及2个射极跟随器A1和A2组成,如图2所示。如果T1和T2是同型号同批次的光电耦合器,可以认为他们的非线性传输特性是完全一致的,即K1(I1)=K2(I1),则放大器的电压增益G=Uo/U1=I3R3/I2R2=(R3/R2)[K1(I1)/K2(I1)]=R3/R2。由此可见,利用T1和T2电流传输特性的对称性,利用反馈原理,可以很好的补偿他们原来的非线性。

图2 光电耦合线性电路
另一种模拟量传输的解决方法,就是采用VFC(电压频率转换)方式,如图3所示。现场变送器输出模拟量信号(假设电压信号),电压频率转换器将变送器送来的电压信号转换成脉冲序列,通过光耦隔离后送出。在主机侧,通过一个频率电压转换电路将脉冲序列还原成模拟信号。此时,相当于光耦隔离的是数字量,可以消除光耦非线性的影响。这是一种有效、简单易行的模拟量传输方式。

图3 VFC方式传送信号
当然,也可以选择线性光耦进行设计,如精密线性光耦TIL300,高速线性光耦6N135/6N136。线性光耦一般价格比普通光耦高,但是使用方便,设计简单;随着器件价格的下降,使用线性光耦将是趋势。
2 提高光电耦合器的传输速度
当采用光耦隔离数字信号进行控制系统设计时,光电耦合器的传输特性,即传输速度,往往成为系统最大数据传输速率的决定因素。在许多总线式结构的工业测控系统中,为了防止各模块之间的相互干扰,同时不降低通讯波特率,我们不得不采用高速光耦来实现模块之间的相互隔离。常用的高速光耦有6N135/6N136,6N137/6N138。但是,高速光耦价格比较高,导致设计成本提高。这里介绍两种方法来提高普通光耦的开关速度。
由于光耦自身存在的分布电容,对传输速度造成影响,光敏三极管内部存在着分布电容Cbe和Cce,如图4所示。由于光耦的电流传输比较低,其集电极负载电阻不能太小,否则输出电压的摆幅就受到了限制。但是,负载电阻又不宜过大,负载电阻RL越大,由于分布电容的存在,光电耦合器的频率特性就越差,传输延时也越长。

图4 光敏三极管内部分布电容
用2只光电耦合器T1,T2接成互补推挽式电路,可以提高光耦的开关速度,如图5所示。当脉冲上升为“1”电平时,T1截止,T2导通。相反,当脉冲为“0”电平时,T1导通,T2截止。这种互补推挽式电路的频率特性大大优于单个光电耦合器的频率特性。

图5 2只光电耦合器构成的推挽式电路
此外,在光敏三极管的光敏基极上增加正反馈电路,这样可以大大提高光电耦合器的开关速度。如图6所示电路,通过增加一个晶体管,四个电阻和一个电容,实验证明,这个电路可以将光耦的最大数据传输速率提高10倍左右。

图6 通过增加光敏基极正反馈来提高光耦的开关速度
3 光耦的功率接口设计
微机测控系统中,经常要用到功率接口电路,以便于驱动各种类型的负载,如直流伺服电机、步进电机、各种电磁阀等。这种接口电路一般具有带负载能力强、输出电流大、工作电压高的特点。工程实践表明,提高功率接口的抗干扰能力,是保证工业自动化装置正常运行的关键。
就抗干扰设计而言,很多场合下,我们既能采用光电耦合器隔离驱动,也能采用继电器隔离驱动。一般情况下,对于那些响应速度要求不很高的启停操作,我们采用继电器隔离来设计功率接口;对于响应时间要求很快的控制系统,我们采用光电耦合器进行功率接口电路设计。这是因为继电器的响应延迟时间需几十ms,而光电耦合器的延迟时间通常都在10us之内,同时采用新型、集成度高、使用方便的光电耦合器进行功率驱动接口电路设计,可以达到简化电路设计,降低散热的目的。
图7是采用光电耦合器隔离驱动直流负载的典型电路。因为普通光电耦合器的电流传输比CRT非常小,所以一般要用三极管对输出电流进行放大,也可以直接采用达林顿型光电耦合器(见图8)来代替普通光耦T1。例如东芝公司的4N30。对于输出功率要求更高的场合,可以选用达林顿晶体管来替代普通三极管,例如ULN2800高压大电流达林顿晶体管阵列系列产品,它的输出电流和输出电压分别达到500mA和50V。

图7 光电隔离,加三极管放大驱动

图8 达林顿型光电耦合器
对于交流负载,可以采用光电可控硅驱动器进行隔离驱动设计,例如TLP541G,4N39。光电可控硅驱动器,特点是耐压高,驱动电流不大,当交流负载电流较小时,可以直接用它来驱动,如图9所示。当负载电流较大时,可以外接功率双向可控硅,如图10所示。其中,R1为限流电阻,用于限制光电可控硅的电流;R2为耦合电阻,其上的分压用于触发功率双向可控硅。

图9 小功率交流负载

图10 大功率交流负载
当需要对输出功率进行控制时,可以采用光电双向可控硅驱动器,例如MOC3010。图11为交流可控驱动电路,来自微机的控制信号 经过光电双向可控硅驱动器T1隔离,控制双向可控硅T2的导通,实现交流负载的功率控制。

图11 交流可控电路
图12为交流电源输出直流可控电路。来自微机的控制信号 经过光电双向可控硅驱动器隔离,控制可控硅桥式整流电路导通,实现交流一直流的功率控制。此电路已经应用在我们实验室研制的新型电机控制设备中,效果良好。

图12 交-直流可控
4 结束语
本文从光电耦合器的基本结构、性能特点出发,针对实际应用中可能遇到的非线性、响应速度、功率接口设计三个方面,提出了相应的几种电路设计方案,并介绍了各种不同类型的光电耦合器及其应用实例
x1x1x1
级别: *
精华主题: * 篇
发帖数量: * 个
工控威望: * 点
下载积分: * 分
在线时间: (小时)
注册时间: *
最后登录: *
查看x1x1x1的 主题 / 回贴
2楼  发表于: 2011-05-09 11:18
IGBT高压大功率驱动和保护电路的应用研究


0 引言
IGBT在以变频器及各类电源为代表的电力电子装置中得到了广泛应用。IGBT集双极型功率晶体管和功率MOSFET的优点于一体,具有电压控制、输入阻抗大、驱动功率小、控制电路简单、开关损耗小、通断速度快和工作频率高等优点。

但是,IGBT和其它电力电子器件一样,其应用还依赖于电路条件和开关环境。因此,IGBT的驱动和保护电路是电路设计的难点和重点,是整个装置运行的关键环节。

为解决IGBT的可靠驱动问题,国外各IGBT生产厂家或从事IGBT应用的企业开发出了众多的IGBT驱动集成电路或模块,如国内常用的日本富士公司生产的EXB8系列,三菱电机公司生产的M579系列,美国IR公司生产的IR21系列等。但是,EXB8系列、M579系列和IR21系列没有软关断和电源电压欠压保护功能,而惠普生产的HCLP一316J有过流保护、欠压保护和1GBT软关断的功能,且价格相对便宜,因此,本文将对其进行研究,并给出1700V,200~300A IGBT的驱动和保护电路。

1 IGBT的工作特性
IGBT是一种电压型控制器件,它所需要的驱动电流与驱动功率非常小,可直接与模拟或数字功能块相接而不须加任何附加接口电路。IGBT的导通与关断是由栅极电压UGE来控制的,当UGE大于开启电压UGE(th)时IGBT导通,当栅极和发射极间施加反向或不加信号时,IGBT被关断。

IGBT与普通晶体三极管一样,可工作在线性放大区、饱和区和截止区,其主要作为开关器件应用。在驱动电路中主要研究IGBT的饱和导通和截止两个状态,使其开通上升沿和关断下降沿都比较陡峭。

2 IGBT驱动电路要求
在设计IGBT驱动时必须注意以下几点。

1)栅极正向驱动电压的大小将对电路性能产生重要影响,必须正确选择。当正向驱动电压增大时,.IGBT的导通电阻下降,使开通损耗减小;但若正向驱动电压过大则负载短路时其短路电流IC随UGE增大而增大,可能使IGBT出现擎住效应,导致门控失效,从而造成IGBT的损坏;若正向驱动电压过小会使IGBT退出饱和导通区而进入线性放大区域,使IGBT过热损坏;使用中选12V≤UGE≤18V为好。栅极负偏置电压可防止由于关断时浪涌电流过大而使IGBT误导通,一般负偏置电压选一5V为宜。另外,IGBT开通后驱动电路应提供足够的电压和电流幅值,使IGBT在正常工作及过载情况下不致退出饱和导通区而损坏。

2)IGBT快速开通和关断有利于提高工作频率,减小开关损耗。但在大电感负载下IGBT的开关频率不宜过大,因为高速开通和关断时,会产生很高的尖峰电压,极有可能造成IGBT或其他元器件被击穿。

3)选择合适的栅极串联电阻RG和栅射电容CG对IGBT的驱动相当重要。RG较小,栅射极之间的充放电时间常数比较小,会使开通瞬间电流较大,从而损坏IGBT;RG较大,有利于抑制dvce/dt,但会增加IGBT的开关时间和开关损耗。合适的CG有利于抑制dic/dt,CG太大,开通时间延时,CG太小对抑制dic/dt效果不明显。

4)当IGBT关断时,栅射电压很容易受IGBT和电路寄生参数的干扰,使栅射电压引起器件误导通,为防止这种现象发生,可以在栅射间并接一个电阻。此外,在实际应用中为防止栅极驱动电路出现高压尖峰,最好在栅射间并接两只反向串联的稳压二极管,其稳压值应与正负栅压相同。

3 HCPL-316J驱动电路
3.1 HCPL-316J内部结构及工作原理
HCPL-316J的内部结构如图1所示,其外部引脚如图2所示。
 



从图1可以看出,HCPL-316J可分为输入IC(左边)和输出IC(右边)二部分,输入和输出之间完全能满足高压大功率IGBT驱动的要求。

各引脚功能如下:
脚1(VIN+)正向信号输入;
脚2(VIN-)反向信号输入;
脚3(VCG1)接输入电源;
脚4(GND)输入端的地;
脚5(RESERT)芯片复位输入端;
脚6(FAULT) 故障输出,当发生故障(输出正向电压欠压或IGBT短路)时,通过光耦输出故障信号;
脚7(VLED1+)光耦测试引脚,悬挂;
脚8(VLED1-)接地;
脚9,脚10(VEE)给IGBT提供反向偏置电压;
脚11(VOUT)输出驱动信号以驱动IGBT;
脚12(VC)三级达林顿管集电极电源;
脚13(VCC2)驱动电压源;
脚14(DESAT) IGBT短路电流检测;
脚15(VLED2+)光耦测试引脚,悬挂;
脚16(VE)输出基准地。

其工作原理如图1所示。若VIN+正常输入,脚14没有过流信号,且VCC2-VE=12v即输出正向驱动电压正常,驱动信号输出高电平,故障信号和欠压信号输出低电平。首先3路信号共同输入到JP3,D点低电平,B点也为低电平,50×DMOS处于关断状态。此时JP1的输入的4个状态从上至下依次为低、高、低、低,A点高电平,驱动三级达林顿管导通,IGBT也随之开通。

若IGBT出现过流信号(脚14检测到IGBT集电极上电压=7V),而输入驱动信号继续加在脚1,欠压信号为低电平,B点输出低电平,三级达林顿管被关断,1×DMOS导通,IGBT栅射集之间的电压慢慢放掉,实现慢降栅压。当VOUT=2V时,即VOUT输出低电平,C点变为低电平,B点为高电平,50×DMOS导通,IGBT栅射集迅速放电。故障线上信号通过光耦,再经过RS触发器,Q输出高电平,使输入光耦被封锁。同理可以分析只欠压的情况和即欠压又过流的情况。

3.2驱动电路设计
驱动电路及参数如图3所示。

 
HCPL-316J左边的VIN+,FAULT和RESET分别与微机相连。R7,R8,R9,D5,D6和C12 起输入保护作用,防止过高的输入电压损坏IGBT,但是保护电路会产生约1µs延时,在开关频率超过100kHz时不适合使用。Q3最主要起互锁作用,当两路PWM信号(同一桥臂)都为高电平时,Q3导通,把输入电平拉低,使输出端也为低电平。图3中的互锁信号Interlock,和Interlock2分别与另外一个316J Interlock2和Interlock1相连。R1和C2起到了对故障信号的放大和滤波,当有干扰信号后,能让微机正确接受信息。

在输出端,R5和C7关系到IGBT开通的快慢和开关损耗,增加C7可以明显地减小dic/dt。首先计算栅极电阻:其中ION为开通时注入IGBT的栅极电流。为使IGBT迅速开通,设计,IONMAX值为20A。输出低电平VOL=2v。可得


C3是一个非常重要的参数,最主要起充电延时作用。当系统启动,芯片开始工作时,由于IGBT的集电极C端电压还远远大于7V,若没有C3,则会错误地发出短路故障信号,使输出直接关断。当芯片正常工作以后,假使集电极电压瞬间升高,之后立刻恢复正常,若没有C3,则也会发出错误的故障信号,使IGBT误关断。但是,C3的取值过大会使系统反应变慢,而且在饱和情况下,也可能使IGBT在延时时间内就被烧坏,起不到正确的保护作用, C3取值100pF,其延时时间


在集电极检测电路用两个二极管串连,能够提高总体的反向耐压,从而能够提高驱动电压等级,但二极管的反向恢复时间要很小,且每个反向耐压等级要为1000V,一般选取BYV261E,反向恢复时间75 ns。R4和C5的作用是保留HCLP-316J出现过流信号后具有的软关断特性,其原理是C5通过内部MOSFET的放电来实现软关断。图3中输出电压VOUT经过两个快速三极管推挽输出,使驱动电流最大能达到20A,能够快速驱动1700v、200-300A的IGBT。

3.3驱动电源设计
在驱动设计中,稳定的电源是IGBT能否正常工作的保证。如图4所示。电源采用正激变换,抗干扰能力较强,副边不加滤波电感,输入阻抗低,使在重负载情况下电源输出电压仍然比较稳定。


当s开通时,+12v(为比较稳定的电源,精度很高)电压便加到变压器原边和S相连的绕组,通过能量耦合使副边经过整流输出。当S关断时,通过原边二极管和其相连的绕组把磁芯的能量回馈到电源,实现变压器磁芯的复位。555定时器接成多谐振荡器,通过对C1的充放电使脚2和脚6的电位在4~8v之间变换,使脚3输出电压方波信号,并用方波信号来控制S的开通和关断。+12v经过R1,D2给C1充电,其充电时间t1≈R1C2ln2;放电时间t2=R2C1ln2,充电时输出高电平,放电时输出低电平。所以占空比=t1/(t1+t2)。

变压器按下述参数进行设计:原边接+12v,频率为60kHz,工作磁感应强度Bw为O.15T,副边+15v输出2A,-5v输出1 A,效率n=80%,窗口填充系数Km为O.5,磁芯填充系数Kc为1,线圈导线电流密度d为3 A/mm2。则输出功率
PT=(15+O.6)×2×2+(5+O.6)×1×2=64W。

变压器磁芯参数


由于带载后驱动电源输出电压会有所下降,所以,在实际应用中考虑提高频率和占空比来稳定输出电压。

4 结语
本文设计了一个可驱动l700v,200~300A的IGBT的驱动电路。硬件上实现了对两个IGBT(同一桥臂)的互锁,并设计了可以直接给两个IGBT供电的驱动电源。
x1x1x1
级别: *
精华主题: * 篇
发帖数量: * 个
工控威望: * 点
下载积分: * 分
在线时间: (小时)
注册时间: *
最后登录: *
查看x1x1x1的 主题 / 回贴
3楼  发表于: 2011-05-11 16:16
HCPL-316J特性

  HCPL-316J是由Agilent公司生产的一种IGBT门极驱动光耦合器,其内部集成集电极发射极电压欠饱和检测电路及故障状态反馈电路,为驱动电路的可靠工作提供了保障。其特性为:兼容CMOS/TYL电平;光隔离,故障状态反馈;开关时间最大500ns;“软”IGBT关断;欠饱和检测及欠压锁定保护;过流保护功能;宽工作电压范围(15~30V);用户可配置自动复位、自动关闭。 DSP与该耦合器结合实现IGBT的驱动,使得IGBT VCE欠饱和检测结构紧凑,低成本且易于实现,同时满足了宽范围的安全与调节需要。

HCPL-316J保护功能的实现

  HCPL-316J内置丰富的IGBT检测及保护功能,使驱动电路设计起来更加方便,安全可靠。其中下面详述欠压锁定保护(UVLO) 和过流保护两种保护功能的工作原理:

(1)IGBT欠压锁定保护(UVLO)功能

  在刚刚上电的过程中,芯片供电电压由0V逐渐上升到最大值。如果此时芯片有输出会造成IGBT门极电压过低,那么它会工作在线性放大区。HCPL316J芯片的欠压锁定保护的功能(UVLO)可以解决此问题。当VCC与VE之间的电压值小于12V时,输出低电平,以防止IGBT工作在线性工作区造成发热过多进而烧毁。示意图详见图1中含UVLO部分。






图1 HCPL-316J内部原理图




  驱动电路的主要逻辑部件是芯片HCPL-316J。它控制IGBT管的导通、关断并且保护IGBT。它的输出功能可以简略的用下面的逻辑功能表来描述。(详见表1)
(2)IGBT过流保护功能

  HCPL-316J具有对IGBT的过流保护功能,它通过检测IGBT的导通压降来实施保护动作。同样从图上可以看出,在其内部有固定的7V电平,在检测电路工作时,它将检测到的IGBT C~E极两端的压降与内置的7V电平比较,当超过7V时,HCPL-316J芯片输出低电平关断IGBT,同时,一个错误检测信号通过片内光耦反馈给输入侧,以便于采取相应的解决措施。在IGBT关断时,其C~E极两端的电压必定是超过7V的,但此时,过流检测电路失效,HCPL-316J芯片不会报故障信号。实际上,由于二极管的管压降,在IGBT的C~E 极间电压不到7V时芯片就采取保护动作。
  
驱动电路方案设计

表1 HCPL-316J逻辑功能表








  表格中最后一列为输出。当输出为High时IGBT导通,否则IGBT关断。IGBT导通需要同时具备最后一行的五个条件,缺一不可,即同相输入为高;反相输入为低;欠压保护功能无效;未检测到IGBT故障,无故障反馈信号或故障反馈信号已被清除。

  根据上述输出控制功能,设计电路如图2。







图2 IGBT驱动电路





  当HCPL-316J输出端VOUT输出为高电平时,推挽电路上管(T1)导通,下管(T2)截止, 三端稳压块LM7915输出端加在IGBT门极(VG1)上,IGBT VCE为15V,IGBT导通。当HCPL-316J输出端VOUT输出为低电平时,上管(T1)截止,下管(T1)导通,VCE为-9V,IGBT关断。以上就是IGBT的开通关断过程。

  整个电路板的作用相当于一个光耦隔离放大电路。它的核心部分是芯片HCPL-316J,其中由控制器(DSP-TMS320F2812)产生XPWM1及XCLEAR*信号输出给HCPL-316J,同时HCPL-316J产生的IGBT故障信号FAULT*给控制器。同时在芯片的输出端接了由NPN和PNP组成的推挽式输出电路,目的是为了提高输出电流能力,匹配IGBT驱动要求。
x1x1x1
级别: *
精华主题: * 篇
发帖数量: * 个
工控威望: * 点
下载积分: * 分
在线时间: (小时)
注册时间: *
最后登录: *
查看x1x1x1的 主题 / 回贴
4楼  发表于: 2011-05-11 16:16
HCPL-316J
2.5 Amp Gate Drive Optocoupler with Integrated (VCE)
Desaturation Detection and Fault Status Feedback
Description
Avago’s 2.5 Amp Gate Drive Optocoupler with Integrated
Desaturation (VCE) Detection and Fault Status Feedback
makes IGBT VCE  fault protection compact, afordable, and
easy-to-implement while satisfying worldwide safety and
regulatory requirements.
Features
•  2.5 A maximum peak output current
•  Drive IGBTs up to IC = 150 A, VCE = 1200 V
•  Optically isolated, FAULT status feedback
•  SO-16 package
•  CMOS/TTL compatible
•  500 ns max. switching speeds
Features (continued)
•  “Soft” IGBT turn-of
•  Integrated fail-safe IGBT protection
– Desat (VCE) detection
  – Under Voltage Lock-Out protection (UVLO)
with    hysteresis
•  User confgurable: inverting, noninverting, auto-reset,
auto-shutdown
•  Wide operating VCC range: 15 to 30 Volts
•  -40°C to +100°C operating temperature range
•  15 kV/µs min. Common Mode Rejection (CMR) at
VCM = 1500 V
•  Regulatory approvals: UL, CSA, IEC/EN/DIN EN 60747-
5-2 (891 Vpeak Working Voltage)
x1x1x1
级别: *
精华主题: * 篇
发帖数量: * 个
工控威望: * 点
下载积分: * 分
在线时间: (小时)
注册时间: *
最后登录: *
查看x1x1x1的 主题 / 回贴
5楼  发表于: 2011-06-02 18:03
安华高编码器在伺服电机领域的应用
精确而可靠地发出检测信号并控制系统精准运行是伺服系统工作良好的保证。光电编码器具有测速精度高、分辨率能力强、受器件影响小的优点,被广泛应用于调速要求高、调速范围范围大的调速系统和伺服系统。AVAGO编码器AEDB-9340系列和AEAT-9000系列,可以提高伺服系统的定位精度,改善伺服电机系统的动态性能。

AVAGO领先业界的六通道换向光学编码器AEDB-9340系列在设计上为无刷直流电机 (BLDC) 闭环控制提供了反馈机制。这款光学编码器集成通道A、B和I作为位置反馈,并使用通道U、V和W检测转子磁极位置,大力矩启动伺服电机。

AEAT-9000系列是AVAGO超高精度17位单圈绝对式编码器,最大分辨率可达131072位置/转。具有可灵活配置的3线/2线SSI接口,利用SPI接口方便快捷完成微控制对编码器的模式配置。


以上两个系列都属于投射型光电编码器。可通过重新配置码盘样式简单更改极对数,不需任何硬件修改,高效快速应用到伺服控制中,本文就以上两系列产品做简单介绍。


一、AEDB-9340产品介绍


1.六通道换向光学编码器



AEDB-9340作为典型的六通道透射式、增量光电编码器,能提供A、B、I三通道位置反馈信号,同时提供U、V、W三通道电机换向信号。在位置信号输出的同时,能根据单圈指示信号 I 输出相关的UVW三路换向信号,其输出可以直接用做无刷电机的电子换向信号,如下图:



2.产品特点


AEDB-9340的A、B、I通道位置输出精度可以达到2500CPR,最高能有150KHz的频率响应,轴径大小则由 3mm到10mm。开关精确度也比传统的霍尔传感器高很多,AEDB-9340编码器系列的换向精确度小于±1机械角度,这个集成解决方案免除了无刷直流电机回馈霍尔传感器的使用,不仅可以降低成本,还能改善整体系统的性能,同时可以缩小集成反馈器件无刷直流电机的整体尺寸大小。


AEDB-9340可以很好的应用于打印机,绘图仪,传送带,以及工厂自动化设备等方面。


二、AEAT-9000产品介绍


1.超高精度17位单圈绝对式编码器



AEAT-9000属于多位输出型编码器,它的串行输出SSI有两种方式。NSL用作使能脚,在SCL时钟到来要读取位置数据之前,NSL先要为低电平。当SCL时钟为低是,DOUT上的数据就被读走。如下图



在一些点对点的传输中,使用去掉NSL的2线模式,其中NSL一直被拉低。当然它的传输速度也变为1.5Mhz。如下图所示



2.产品特点


AEAT-9000有正余弦模拟输出和增量式A、B数字输出供用户选择,精度可以达到2048CPR。SSI输出的速率有1.5Mhz和10Mhz,方便用户选择并且提高了可靠性,电源电压5V,轴径大小则由 3mm到12mm。正余弦通道的差补提高了AEAT-9000的精度,这对伺服系统的位置、速度精度大大提高,SPI接口方便了用户对AEAT-9000的灵活配置,降低了伺服系统的体积。


AEAT-9000编码器主要应用要求比较高的场合,如伺服电机、工业和海事阀控制、高精度测试和测量仪器、工厂自动化设备、纺织、木工及包装机械、风力涡轮机等。


三、AEDB-9340和AEAT-9000在伺服电机中应用



上图为安华高编码器在伺服系统中应用框图。


AEDB-9340在系统中能实现位置信号A、B、I三个通道输出,根据位置计算伺服电机的运行速度,对主控制器要求的位置和速度进行精确的控制。同时,在伺服电机特别是BLDC无刷电机的控制中,可以将光电编码器产生的UVW三个换向信号直接用于马达的换向信号,而不做额外的信号处理。编码器的响应速度快,能适应于多种运行速度的伺服电机,相比之下,霍尔传感器则增加了伺服电机尺寸、设计复杂性和组装成本。


如果用户对成本不是很敏感,对控制精度,干扰和位置准确性比较高的话,安华高超高精度AEAT-9000可供选择,在伺服框图中,模拟的正余弦通道或数字A、B通道输出电机的位置信息,用于位置环、速度换的闭环控制,SSI同步串行输出保证了可靠性,用于微控制器对电机的控制,同时SPI接口增强编码器的通讯功能。AEAT-9000还很好满足用户对脉冲数、轴径、信号输出形式、电压、尺寸等方面的要求,并丰富了以上功能。