增量编码器的A/B输出的波形一般有两种,一种是有陡直上升沿和陡直下降沿的方波信号,一种是缓慢上升与下降,波形类似正弦曲线的Sin/Cos曲线波形信号输出,A与B相差1/4T周期90度相位,如果A是类正弦Sin曲线,那B就是类余弦Cos曲线。
对于方波信号,A,B两相相差90度相(1/4T),这样,在0度相位角,90度,180度,270度相位角,这四个位置有上升沿和下降沿,这样,实际上在1/4T方波周期就可以有角度变化的判断,这样1/4的T周期就是最小测量步距,通过电路对于这些上升沿与下降沿的判断,可以4倍于PPR读取角度的变化,这就是方波的四倍频。这种判断,也可以用逻辑来做,0代表低,1代表高,A/B两相在一个周期内变化是0 0,0 1,1 1,1 0 。这种判断不仅可以4倍频,还可以判断旋转方向。
那么,方波信号的最小分辨角度=X度/(4xPPR)。
严格地讲,方波最高只能做4倍频,虽然有人用时差法可以分的更细,但那基本不是增量编码器推荐的,更高的分频要用增量脉冲信号是SIN/COS类正余弦的信号来做,后续电路可通过读取波形相位的变化,用模数转换电路来细分,5倍、10倍、20倍,甚至100倍以上,分好后再以方波波形输出(PPR)。 分频的倍数实际是有限制的,首先,模数转换有时间响应问题,模数转换的速度与分辨的精确度是一对矛盾,不可能无限细分,分的过细,响应与精准度就有问题; 其次,原编码器的刻线精度,输出的类正余弦信号本身一致性、波形完美度是有限的,分的过细,只会把原来码盘的误差暴露得更明显,而带来误差。细分做起来容 易,但要做好却很难,其一方面取决于原始码盘的刻线精度与输出波形完美度,另一方面取决于细分电路的响应速度与分辨精准度。例如,德国海德汉的工业编码 器,推荐的最佳细分是20倍,更高的细分是其推荐的精度更高的角度编码器,但旋转的速度是很低的。